organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Chloro-*N*-(2,4-dimethylphenyl)benzamide

Bin Zhou* and Peng-Wu Zheng

School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China Correspondence e-mail: tju_zhoubin@yahoo.com.cn

Received 17 October 2007; accepted 29 October 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.003 Å; R factor = 0.047; wR factor = 0.128; data-to-parameter ratio = 14.0.

Molecules of the title compound, $C_{15}H_{14}CINO$, are linked into chains along the *c* axis by intermolecular $N-H\cdots O$ hydrogen bonds. The xylene and chlorobenzene rings deviate from the amide plane [C(=O)-N] by 77.8 (1) and 29.7 (1)°, respectively.

Related literature

For arylamides, see: Jackson *et al.* (2002); Gowda, Sowmya, Kožíšek *et al.* (2007); Gowda, Sowmya, Tokarčík *et al.* (2007*a,b*); Gowda, Foro *et al.* (2007).

Experimental

Crystal data

C₁₅H₁₄CINO $M_r = 259.72$ Monoclinic, $P2_1/c$ a = 22.918 (6) Å b = 6.4588 (17) Å c = 9.261 (3) Å $\beta = 99.654$ (4)° $V = 1351.4 \text{ (6) } \text{\AA}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.27 \text{ mm}^{-1}$ T = 294 (2) K $0.30 \times 0.26 \times 0.20 \text{ mm}$

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.924, T_{max} = 0.948$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.128 & \text{independent and constrained} \\ S &= 1.05 & \text{refinement} \\ 2367 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.18 \text{ e} \text{ Å}^{-3} \\ 1 \text{ restraint} & \Delta\rho_{\text{min}} &= -0.26 \text{ e} \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N1-H1A\cdotsO1^{i}$	0.892 (10)	2.027 (12)	2.886 (2)	161 (2)	
Symmetry code: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.					

4885 measured reflections

 $R_{\rm int} = 0.023$

2367 independent reflections

1861 reflections with $I > 2\sigma(I)$

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 1997); software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2319).

References

- Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0) and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Gowda, B. T., Foro, S., Sowmya, B. P. & Fuess, H. (2007). Acta Cryst. E63, 03789.
- Gowda, B. T., Sowmya, B. P., Kožíšek, J., Tokarčík, M. & Fuess, H. (2007). Acta Cryst. E63, o2906.
- Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007a). Acta Cryst. E63, 03326.
- Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007b). Acta Cryst. E63, 03365.
- Jackson, R. J., Parvez, M., Nizami, S. S. & Khan, R. Y. (2002). Acta Cryst. E58, 0282–0284.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4630 [doi:10.1107/S1600536807054256]

4-Chloro-N-(2,4-dimethylphenyl)benzamide

B. Zhou and P.-W. Zheng

Comment

The bonds to nitrogen of the title amide (I), Fig.1, lie in the same plane (C7—N1—C8 123.92 (17), C7—N1—H1A 121.5 (16), C8—N1—H1A 114.5 (16)), unlike the pyramidal arrangement of bonds in ammonia and amines. The C7—N1 bond has considerable double-bond character, at 1.344 (3) Å, is substantially shorter than the normal C—N single-bond distance observed in amines. The dihedral angle between the xylene and chlorobenzene ring is 73.27 (11)°.

In the crystal of (I), the intermolecular N—H…O H-bonds (Table 1) linked molecules to chains along the c axis (Fig.2).

Experimental

The title compound was prepared, in a 90% yield, by reaction of 2,4-xylidine (1.21 g, 10 mmol) with 4-chlorobenzoyl chloride (1.92 g, 11 mmol) in CH_2Cl_2 (20 ml)in the presence of aqueous NaHCO₃ (1.68 g, 20 mmol). Colorless blocks of (I) were grown by natural evaporation of a MeOH solution.

Refinement

The N-bound H atoms were refined freely while the other H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of (I), with the atom-numbering scheme and 30% probability displacement ellipsoids for the non-hydrogen atoms.

Fig. 2. A partial packing diagram for (1). The dashed lines indicate intermolecular hydrogen bonds.

4-Chloro-N-(2,4-dimethylphenyl)benzamide

Crystal data C₁₅H₁₄ClNO

 $F_{000} = 544$

$M_r = 259.72$
Monoclinic, $P2_1/c$
Hall symbol: -P 2ybc
<i>a</i> = 22.918 (6) Å
<i>b</i> = 6.4588 (17) Å
c = 9.261 (3) Å
$\beta = 99.654 \ (4)^{\circ}$
V = 1351.4 (6) Å ³
Z = 4

Data collection

2367 independent reflections
1861 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.023$
$\theta_{\text{max}} = 25.0^{\circ}$
$\theta_{\min} = 1.8^{\circ}$
$h = -20 \rightarrow 27$
$k = -7 \rightarrow 5$
$l = -11 \rightarrow 8$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.128$	$w = 1/[\sigma^2(F_o^2) + (0.0514P)^2 + 0.7152P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\rm max} = 0.002$
2367 reflections	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
169 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none

 $D_{\rm x} = 1.277 \text{ Mg m}^{-3}$ Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.1-26.3^{\circ}$ $\mu = 0.27 \text{ mm}^{-1}$ T = 294 (2) KBlock, colorless $0.30 \times 0.26 \times 0.20 \text{ mm}$

Cell parameters from 2688 reflections

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}^{*}/U_{\rm eq}$
Cl1	0.03364 (4)	1.33583 (14)	0.65684 (12)	0.1027 (4)
01	0.23813 (7)	0.5885 (2)	0.72579 (15)	0.0473 (4)
N1	0.25229 (8)	0.6922 (3)	0.96238 (18)	0.0454 (5)
C1	0.08899 (11)	1.1520 (4)	0.7080 (3)	0.0592 (7)
C2	0.08721 (11)	0.9683 (5)	0.6315 (3)	0.0646 (7)
H2	0.0567	0.9420	0.5539	0.077*
C3	0.13137 (10)	0.8242 (4)	0.6718 (3)	0.0519 (6)
H3	0.1306	0.7005	0.6202	0.062*
C4	0.17688 (9)	0.8604 (3)	0.7879 (2)	0.0389 (5)
C5	0.17761 (11)	1.0476 (4)	0.8624 (3)	0.0544 (6)
Н5	0.2079	1.0747	0.9402	0.065*
C6	0.13392 (13)	1.1936 (4)	0.8224 (3)	0.0648 (7)
H6	0.1349	1.3188	0.8723	0.078*
C7	0.22494 (9)	0.7027 (3)	0.8224 (2)	0.0388 (5)
C8	0.30162 (9)	0.5585 (3)	1.0128 (2)	0.0393 (5)
C9	0.35792 (10)	0.6094 (3)	0.9857 (2)	0.0409 (5)
C10	0.40452 (10)	0.4800 (4)	1.0444 (2)	0.0453 (5)
H10	0.4424	0.5121	1.0278	0.054*
C11	0.39697 (10)	0.3051 (4)	1.1265 (2)	0.0480 (6)
C12	0.34021 (10)	0.2593 (4)	1.1516 (2)	0.0504 (6)
H12	0.3339	0.1436	1.2068	0.061*
C13	0.29303 (10)	0.3851 (4)	1.0947 (2)	0.0449 (5)
H13	0.2552	0.3529	1.1117	0.054*
C14	0.36859 (12)	0.7973 (4)	0.8979 (3)	0.0594 (7)
H14A	0.4104	0.8208	0.9065	0.089*
H14B	0.3503	0.9157	0.9343	0.089*
H14C	0.3519	0.7754	0.7969	0.089*
C15	0.44913 (13)	0.1704 (5)	1.1882 (3)	0.0760 (9)
H15A	0.4766	0.1661	1.1205	0.114*
H15B	0.4355	0.0328	1.2035	0.114*
H15C	0.4684	0.2268	1.2798	0.114*
H1A	0.2396 (10)	0.765 (3)	1.033 (2)	0.062 (7)*
	0).		
Atomic displacem	ent parameters (Å ²)		

Fractional	atomic	coordinates	and	isotropi	c or e	eauivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1				1001.001	• • • •	900000000000000000000000000000000000000	1001.00		p 1010 0	pen enterers	(/	/

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Cl1	0.0736 (6)	0.0776 (6)	0.1499 (9)	0.0316 (4)	-0.0017 (5)	0.0127 (5)
01	0.0544 (9)	0.0523 (9)	0.0344 (7)	0.0066 (8)	0.0053 (6)	-0.0048 (7)
N1	0.0505 (11)	0.0548 (12)	0.0307 (9)	0.0119 (9)	0.0064 (8)	-0.0029 (8)

supplementary materials

C1	0.0461 (14)	0.0566 (15)	0.0749 (17)	0.0100 (12)	0.0105 (12)	0.0102 (13)
C2	0.0425 (14)	0.0704 (18)	0.0750 (17)	0.0028 (13)	-0.0070 (12)	0.0000 (15)
C3	0.0430 (13)	0.0528 (15)	0.0577 (14)	-0.0018 (11)	0.0023 (11)	-0.0071 (11)
C4	0.0379 (11)	0.0446 (12)	0.0350 (10)	-0.0015 (9)	0.0080 (8)	0.0023 (9)
C5	0.0602 (15)	0.0515 (14)	0.0473 (13)	0.0038 (12)	-0.0033 (11)	-0.0055 (11)
C6	0.0759 (19)	0.0464 (15)	0.0713 (17)	0.0099 (13)	0.0100 (14)	-0.0054 (13)
C7	0.0419 (12)	0.0420 (12)	0.0330 (10)	-0.0031 (9)	0.0078 (9)	-0.0006 (9)
C8	0.0447 (12)	0.0442 (12)	0.0278 (9)	0.0026 (10)	0.0025 (8)	-0.0043 (9)
C9	0.0467 (13)	0.0441 (12)	0.0320 (10)	-0.0026 (10)	0.0065 (9)	0.0005 (9)
C10	0.0394 (12)	0.0551 (14)	0.0414 (11)	-0.0040 (10)	0.0061 (9)	-0.0005 (10)
C11	0.0516 (14)	0.0462 (13)	0.0448 (12)	0.0038 (11)	0.0038 (10)	0.0012 (10)
C12	0.0598 (15)	0.0402 (12)	0.0508 (12)	-0.0046 (11)	0.0079 (11)	0.0071 (11)
C13	0.0442 (12)	0.0497 (13)	0.0415 (11)	-0.0067 (11)	0.0089 (9)	-0.0015 (10)
C14	0.0628 (16)	0.0573 (16)	0.0587 (14)	-0.0036 (13)	0.0120 (12)	0.0147 (12)
C15	0.0644 (18)	0.074 (2)	0.085 (2)	0.0148 (15)	0.0009 (15)	0.0197 (16)

Geometric parameters (Å, °)

Cl1—C1	1.744 (3)	C8—C9	1.395 (3)
O1—C7	1.236 (2)	C9—C10	1.393 (3)
N1—C7	1.344 (3)	C9—C14	1.503 (3)
N1—C8	1.437 (3)	C10-C11	1.388 (3)
N1—H1A	0.892 (10)	C10—H10	0.9300
C1—C6	1.374 (4)	C11—C12	1.391 (3)
C1—C2	1.379 (4)	C11—C15	1.511 (3)
C2—C3	1.380 (3)	C12—C13	1.384 (3)
С2—Н2	0.9300	C12—H12	0.9300
C3—C4	1.387 (3)	С13—Н13	0.9300
С3—Н3	0.9300	C14—H14A	0.9600
C4—C5	1.390 (3)	C14—H14B	0.9600
C4—C7	1.495 (3)	C14—H14C	0.9600
С5—С6	1.380 (4)	C15—H15A	0.9600
С5—Н5	0.9300	C15—H15B	0.9600
С6—Н6	0.9300	C15—H15C	0.9600
C8—C13	1.386 (3)		
C7—N1—C8	123.92 (17)	C10—C9—C8	117.4 (2)
C7—N1—H1A	121.5 (16)	C10-C9-C14	120.8 (2)
C8—N1—H1A	114.5 (16)	C8—C9—C14	121.8 (2)
C6—C1—C2	121.2 (2)	C11—C10—C9	123.0 (2)
C6-C1-Cl1	119.5 (2)	C11—C10—H10	118.5
C2-C1-Cl1	119.3 (2)	C9—C10—H10	118.5
C1—C2—C3	119.0 (2)	C10-C11-C12	118.1 (2)
C1—C2—H2	120.5	C10-C11-C15	120.8 (2)
С3—С2—Н2	120.5	C12—C11—C15	121.1 (2)
C2—C3—C4	121.2 (2)	C13—C12—C11	120.3 (2)
С2—С3—Н3	119.4	C13—C12—H12	119.9
С4—С3—Н3	119.4	C11—C12—H12	119.9
C3—C4—C5	118.4 (2)	C12—C13—C8	120.6 (2)
C3—C4—C7	118.81 (19)	C12—C13—H13	119.7

C5—C4—C7	122.64 (19)	C8—C13—H13	119.7
C6—C5—C4	120.9 (2)	C9—C14—H14A	109.5
С6—С5—Н5	119.6	C9—C14—H14B	109.5
С4—С5—Н5	119.6	H14A—C14—H14B	109.5
C1—C6—C5	119.3 (2)	C9—C14—H14C	109.5
С1—С6—Н6	120.3	H14A—C14—H14C	109.5
С5—С6—Н6	120.3	H14B—C14—H14C	109.5
O1—C7—N1	122.50 (19)	C11—C15—H15A	109.5
O1—C7—C4	120.87 (17)	C11—C15—H15B	109.5
N1—C7—C4	116.63 (18)	H15A—C15—H15B	109.5
C13—C8—C9	120.7 (2)	C11—C15—H15C	109.5
C13—C8—N1	119.17 (19)	H15A—C15—H15C	109.5
C9—C8—N1	120.08 (19)	H15B-C15-H15C	109.5
C6—C1—C2—C3	0.3 (4)	C7—N1—C8—C13	-106.9 (2)
Cl1—C1—C2—C3	179.5 (2)	C7—N1—C8—C9	76.4 (3)
C1—C2—C3—C4	0.5 (4)	C13—C8—C9—C10	-0.2 (3)
C2—C3—C4—C5	-0.9 (4)	N1-C8-C9-C10	176.43 (18)
C2—C3—C4—C7	-177.3 (2)	C13—C8—C9—C14	-179.6 (2)
C3—C4—C5—C6	0.4 (4)	N1-C8-C9-C14	-3.0 (3)
C7—C4—C5—C6	176.7 (2)	C8—C9—C10—C11	0.4 (3)
C2—C1—C6—C5	-0.8 (4)	C14—C9—C10—C11	179.8 (2)
Cl1—C1—C6—C5	180.0 (2)	C9-C10-C11-C12	-0.5 (3)
C4—C5—C6—C1	0.4 (4)	C9-C10-C11-C15	-179.8 (2)
C8—N1—C7—O1	4.1 (3)	C10-C11-C12-C13	0.4 (3)
C8—N1—C7—C4	-176.16 (19)	C15-C11-C12-C13	179.7 (2)
C3—C4—C7—O1	27.6 (3)	C11—C12—C13—C8	-0.3 (3)
C5—C4—C7—O1	-148.7 (2)	C9—C8—C13—C12	0.2 (3)
C3—C4—C7—N1	-152.1 (2)	N1-C8-C13-C12	-176.50 (19)
C5—C4—C7—N1	31.6 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A···O1 ⁱ	0.892 (10)	2.027 (12)	2.886 (2)	161 (2)

Symmetry codes: (i) x, -y+3/2, z+1/2.

